
ETMS Systems Design Document
Version 6.0

23-1

Section 23

Traffic Model Design Overview

This section includes explanations of the aircraft profiling techniques and inter-process
communications that are used throughout the three Traffic Model Functions: the Parser, the
Flight Database Processor, and the Traffic Demands Database Processor.

23.1 Aircraft Dynamics Modeling

Purpose

The speed and altitude of an F16 are obviously quite different from those of a B737 during the
takeoff and climb phases. Similarly, different aircraft types may differ in speed in the descent
phases. This section describes a mathematical model that accurately predicts the speed,
altitude, flight phase, and time along the flight path and accounts for the type of aircraft.
There are three major routines in this model; all use information from an associated aircraft
dynamics database.

Two of these routines are accomplished in the Parser. The first is appropriately named
assign_a_profile. For each flight, the Parser calls this routine to initialize many of the flight
variables. This routine has two purposes:

• To assign an ascent and a descent profile.

• To check for inconsistencies and errors in the flight variables in the NAS
messages given the type of aircraft.

The second routine is repeatedly called by the Parser throughout the entire flight. Its function
is accomplished by a routine aptly named get altitude value, whose purpose is to predict the
altitude, speed, and flight phase for a variety of aircraft along any reasonable flight path. For
details on this routine, see Section 24.

The third routine is called get time value. It is repeatedly called by the Flight Database
Processor later in the overall processing. The purpose of this routine is to predict the time for
each flight event for a flight. For details on get time value, see Section 25.

Figure 23-1 depicts a top level data flow diagram showing the essential aircraft dynamics
modeling elements: functions, data storages, and data flows. These elements are described in
more depth in later sections.

ETMS System Design Document
Version 6.0

23-2

d s g _ m a t c h u p _ t a b l e

2 3 . 1 . 2 . 2

F l i g h t
R e c o r d
(c a l l e d b y
P a r s e r)

F l i g h t
R e c o r d
(c a l l e d b y
F l i g h t D a t a
B a s e
P r o c e s s o r)

F l i g h t
R e c o r d
(c a l l e d b y
P a r s e r)

t e m p l a t e _ n a m e s

2 3 . 1 . 2 . 2 . 2

l o o k u p _ p r o f i l e

2 3 . 1 . 2 . 3 . 1

a s c e n t _ a l t _ m a p

2 3 . 1 . 2 . 3 . 2

d e s c e n t _ a l t _ m a p

2 3 . 1 . 2 . 3 . 3

a s c e n t _ d i s t _ m a p

2 3 . 1 . 2 . 3 . 2

d e s c e n t _ d i s t _ m a p

2 3 . 1 . 2 . 3 . 3

g e t _ a l t i t u d e _ v a l u e g e t _ t i m e _ v a l u e

a s s i g n _ a _ p r o f i l ea s s i g n _ a _ p r o f i l e
2 3 . 1

D a t a / P r o f i l e
. t x t

Figure 23-1. Aircraft Dynamics Data Flow Diagram

23.1.1 The Flight Record: a Common Vehicle for I/O

All three routines (assign_a_profile, get_altitude_value, and get_time_value) previously
described pass information from the calling procedures using the flight record. While the
flight record structure does not vary from routine to routine, the usage does change. For
instance, field name values produced as output from the assign_a_profile procedure may be
used as input to the get_altitude_value procedure. Similarly, flight record fields functioning
as output in the get_altitude_value procedure will be used as input in the get_time_value
procedure.

In addition to a variety of fields, there are two small records embedded in the flight record.

ETMS Systems Design Document
Version 6.0

23-3

The two are identical in structure and contain the following variables: distance from takeoff,
altitude, speed, latitude, longitude, time, and phase. As the flight is developing, the first sub-
record, referred to as the previous node, contains the values of the previous position of the
aircraft (i.e., the previous procedure call). The values of this sub-record are always available
as input. The second sub-record, named the now node, contains the values of the current
procedure call and the input/output usage of the fields differs depending on the procedure.
Upon returning from any of the profile procedures, the calling procedure must move the now
node values to the previous node and prepare the now node input fields for the next call. The
elements (sub-records, field names, etc.) of the flight record are described in Table 23-1.

NOTE: The speed is in units of 100*(nautical miles/minute). All the other elements are in their
usual units.

ETMS System Design Document
Version 6.0

23-4

ETMS Systems Design Document
Version 6.0

23-5

Table 23-1. Aircraft Dynamics Flight Record
Flight Record

Library Name: Profile_openlib Element Name: Profile.h

Data Item Definition Unit Legal
Range

Var. Type I/O by Function +

F_1 F_2 F_3
flt_id Flight identifier (e.g. AAL 123) array [1..10]

of char
I - -

filed_fz_onground indicates the disposition of the filed Field10 Field
10 filed on ground = T; filed in air = F

T or F boolean I - -

civ indicates if the aircraft is civilian or military
civilian aircraft = T; military aircraft = F

T or F boolean O I -

runaway indicates that flight errors or inconsistencies are
severe & fatal = T; no major problem = F

T or F boolean O - -

dsg-actual actual designator taken from the FZ array [1..4]
of char

I - -

aircraft_index index indicating a record in the Aircraft_Des-
cription Map which describes the given aircraft

flight

-1 to max_
plane_type

short O - -

dsg_index index indicating the particular template aircraft
assigned to this flight

1 to
tot_templates

short O I I

ascent_index index indicating the particular ascent profile for
this flight

1 to max_as-
cent_profile

short O I I

descent_index index indicating the particular descent profile for
this flight

1 to
max_des-

cent_profile

short O I I

dist_total total distance for this flight n.miles INT32 I I I

origin_lat latitude of the originating airport radians float I I I

origin_lon longitude of the originating airport radians float I I I

ETMS System Design Document
Version 6.0

23-6

Flight Record (cont’d)

Library Name: Profile_openlib Element Name: Profile.h

Data Item Definition Unit Legal
Range

Var. Type I/O by Function +

F_1 F_2 F_3
dest_lat latitude of the destination airport radians float I I I

dest_Ion longitude of the destination airport radian float I I I

dist_cruz distance from the takeoff roll to the point at which
the aircraft achieves crusing altitude

n.miles INT32 O I -

spd_cruz crusing speed for this flight (n.miles/
min)x100

INT32 I/O I I

alt_cruz crusing altitude for this flight feet/100 0 to 600 INT32 I/O I I

dist_descent distrance from the begin descent point to the point
where the aircraft touches down

n.miles 0 to 600 INT32 O I I

previous.dist previous distance along the flight path n.miles INT32 O I I

previous.lat latitude at the previous location for this flight radian float O I I

previous.lon longitude at the previous location for this flight radian float O I I

previous.phase flight phase at the previous location for this flight flight phase
see 7.1.2.2

Table 23-1. Aircraft Dynamics Flight Record (continued)

ETMS Systems Design Document
Version 6.0

23-7

Notes: + F_1 indicates Assign_A_Porfile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Vaule

ETMS System Design Document
Version 6.0

23-8

Table 23-1. Aircraft Dynamics Flight Record (continued)

Flight Record (cont’d)

Library Name: Profile_openlib Element Name: Profile.h

Data Item Definition Unit Legal Range Var. Type I/O by Function +
F_1 F_2 F_3

previous.alt altitude at the previous location for this flight feet/100 0 to 600 integer32 O I I

previous.speed speed at the previous location for this flight (n.mile/
min)x100

integer32 O I I

previous.time accumulated time from takeoff roll to the previous
location of the flight

minutes real - - I

now.dist current distance along the flight path n.miles integer32 I I I

now.lat latitude at the current location for this flight radian real I I I

now.lon longitude at the current location for this flight real I I I

now.phase flight phase at the current location for this flight flight phase
see 7.1.2.2

O O I

now.alt altitude at the current location for this flight feet/100 0 to 600 integer32 O O I

now.speed speed at the current location from this flight (n.miles/
min)x100

integer32 O O I/O

now.time flying time from the previous location to the
current location

minutes real - - O

no_descent indicated whether or not the descent is modeled
no_descent modeled = T; not land now = F

T or F boolean 1 1 1

get_down indicates whether the flight must land on this call
or not. Must land now = T; not land now = F

T or F boolean - 1 1

ETMS Systems Design Document
Version 6.0

23-9

Notes: + F_1 indicates Assign_A_Porfile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Vaule

ETMS System Design Document
Version 6.0

23-10

The flight phase is a user defined type and is used in the previous.phase and now.phase. It is
assumed that, for a flight, vertical movement proceeds sequentially from ascent to level flight
to descent. Table 23-2 shows seven ordered values that describe the phases of flight.

Table 23-2. User Defined Flight Phases

Value Flight Phase Description
0 takeoff_phase Takeoff roll up to either FL100 or cruise altitude, whichever is

lower.
1 climb_phase Ascending from FL100 to cruise altitude.

2 level_out_phase Flying level within the originating TCA (i.e., 30 nautical miles from
the original airport and below FL100).

3 enroute_phase Flying level and not in the originating TCA.

4 arrive_phase Descending from cruise altitude down to FL100.

5 approach_phase Descending from FL100 down to touchdown.

6 landed_phase Flight has landed.

The ordered nature of this type constrains the possible current values based on the previous
value; the now.phase can be either equal to or higher than the previous.phase. For example,
if the previous phase has a value of enroute_phase, the current phase may be en route,
arrive, approach, or landed. Note, however, that after takeoff, a flight may either climb or
level out depending on the particular flight plan; both values can never be attained for the
same flight.

23.1.2 Aircraft Dynamics Database

Seven map files comprise the aircraft dynamics database. Each map file is accessed by a
pointer. During the startup of the system, the Parser opens the map files and calls the
set_profile_map_ptrs procedure (in module
/atms/libraries/profile_lib/profile_routines.pas) to set the pointers to the map files. The
Parser closes the map files as required. The map files names are: dsg_matchup_table,
template_names, lookup_profile, ascent_alt_map, ascent_dist_map, descent_alt_map,
and descent_dist_map. Each is shown in Figure 23-1; they are described in more detail in
Sections 23.1.2.2 and 23.1.2.3. In addition, information about the various aircraft types is
summarized in the map file aircraft_categories.map, which is used by the Schedule Data
Base (SDB) and the Parser.

23.1.2.1 Error Adjustment in the Aircraft Dynamics Database

The mapped files of the database use a convention regarding the correctness of variable
values. All of the numerical variables in the database may be physical in nature (e.g., altitude,
speed, distance, or time) or may be used as an index in another array. According to our
convention, a non-negative value indicates that the value is correct or consistent in the context
of the database. A negative value is indicative of an error. When a negative value is detected,

ETMS Systems Design Document
Version 6.0

23-11

the data is processed to account for the problem.

23.1.2.2 The dsg_matchup_table Map File

The dsg_matchup_table (Aircraft Descriptor) map file is used to characterize the aircraft
employed in a given flight. It is structured as an array in which each element is a record
containing the same six fields. There are currently 715 such records, each describing an
aircraft model. The fields are described in Table 23-3.

ETMS System Design Document
Version 6.0

23-12

Aircraft Descriptor Map File

Library Name: profile_openlib

Purpose:
This data structure is used to get the aircraft performance data for ascent and descent profiles, and to categorize the aircraft type,
as to weight class, category, etc.

Element Name: profile.h

Data Item
Definition

Unit/Format
Range

Var. Type/Bits

dsg
Aircraft designator from FAA Publication 7340 “Contractors”

[A..Z], [0..9]
string4

id
Index of template aircraft most similar to this aircraft

[1..44]
short

group
One of 7 aircraft categories, similar to aircraft category.

grp user defined see below

wt_cls
Weight class +

S or L or H
char

civ
True if civilian aircraft

False if military aircraft

Boolean

faacat
For definitions, see Table 19-13

[1..9]
unsigned short

Table 23-3. dsg_matchup_table (Aircraft Descriptor) Data Structure

ETMS Systems Design Document
Version 6.0

23-13

† Small < = 12,5000 lbs.
 12,500 < Large < 300,000 lbs.
 Heavy = > 300,000 lbs.

ETMS System Design Document
Version 6.0

23-14

The group field has seven categories which grossly classify the aircraft and are shown in
Table 23-4. The factors which determine the categories include weight class, type of
propulsion, and typical mission (e.g., general aviation (GA), commercial, attack/fighter, etc.).
The grp categories are similar to, but not the same as, the faacat field (see Table 19-13 for
acft_category definitions).

 Table 23-4. Grp Values

Value Enumerated Name Definition

1 PISTONPROP Piston—propeller drive aircraft

2 TURBOPROP Turbine—propeller drive aircraft

3 LARGE_COM_JET Small or Large GA/commercial jet

4 HEAVY_COM_JET Heavy GA/commercial jet

5 FIGHTER Jet trainer, fighter, or attack aircraft

6 BIG_MIL_JET Military jetcargo/tanker/bomberaircraft

7 HELICOPER Helicopter (of any type)

23.1.2.2.1 The Designator-Template Matching Rule

In order to simulate the ascent of any aircraft accurately, the aircraft dynamics model first
requires detailed profile data for a population of the most popular aircraft. For the purposes of
this section, the popular aircraft are called template aircraft. There are currently 44 template
aircraft in the population. This consists of 43 template aircraft from previous work on the
Integrated Noise Model (see ETMS Functional Description, Section 7) and an additional
model for helicopters.

The aircraft dynamics model then requires a rule which determines the template aircraft most
similar to the aircraft being modeled. The modeled aircraft uses the profile data from the
matched template aircraft to simulate the flight. With one exception, the matching rule first
constrains the search for the template most similar to those that have the same grp category
as the aircraft in the flight. If the given aircraft is identical to one of the template aircraft there
is an obvious match. If not, the given aircraft is compared with each template in the category
with regard to the maximum comfortable climb rate and dive rate as published in FAA
Publication 7340. Among those in the appropriate grp category, the template aircraft that
produces the smallest value computed according to the formula illustrated in Figure 23-2 is
then matched to the modeled aircraft.

ETMS Systems Design Document
Version 6.0

23-15

(C * - C i) (D * - D i)
+

C * D *
+

(C * - C i)

C *

(D * - D i)

D *
+

K e y
C * M a x i m u m c o m f o r t a b l e c l i m b r a t e f o r t h e m o d e l e d a i r c r a f t

D * M a x i m u m c o m f o r t a b l e d i v e r a t e f o r t h e m o d e l e d a i r c r a f t

C i M a x i m u m c o m f o r t a b l e c l i m b r a t e f o r t h e “ I ” t h t e m p l a t e i n t h e s a m e g r p c a t e g o r y a s t h e
m o d e l e d a i r c r a f t

D i M a x i m u m c o m f o r t a b l e d i v e r a t e f o r t h e “ I ” t h t e m p l a t e i n t h e s a m e g r p c a t e g o r y a s t h e
m o d e l e d a i r c r a f t

. . . I n d i c a t e s a n a b s o l u t e v a l u e o p e r a t i o n o n t h e e x p r e s s i o n w i t h i n t h e v e r t i c a l l i n e s

Figure 23-2 Template Aircraft Matching Formula

This rule is applied in a program named match_planes, described in Section 32, which creates
a new dsg_matchup_table map file (as well as template names and lookup_profile map
files) when a new version is required (because of changes in template_ac or candidate_ac).
In routine application, when the ascent of a given flight is to be simulated, one searches in the
dsg_matchup_table map file for the record containing the appropriate dsg value. The value of
the ID field in that same record is used as an index to the template aircraft.

23.1.2.2.2 The template names Map File

The template names map file is used to find the name of the template aircraft when an error
or inconsistency is detected by the assign_a_profile procedure. When an error or
inconsistency is found, an error record is written to the data/profile.txt file. The map file is
quite small and is structured as a doubly indexed array. The first index points to a particular
template aircraft; there are currently 44 such templates. The second index points to any one
of four characters which comprise the designator of the template. The structure of template
names map is shown in Figure 23-3.

ETMS System Design Document
Version 6.0

23-16

25

26

27

.

.

.

D C 8

B 7 2 S

B 7 5 7

1 2 3 4
. . . .

Individual characters in the Template Designators

1

2

3

C 1 5 0

C 3 3 7

D C 3

42

43

44

Template Aircraft Index

.

.

.

.

.

.

.

A 7

K C 3 5

L I

E H

Figure 23-3. Structure of the template_names Map File

23.1.2.3 Profile Map Files

The profile map files contain the detailed data essential in modeling the ascent and descent of
the flight. There are two ascent and two descent map files. The total size of the two ascent
map files is approximately 256 kilobytes; the total size of the two descent map files is
substantially less (approximately 9 kilobytes). The map files are structured as arrays and the
elements are formatted in INT32 allowing for both high speed and accuracy. These map files
are initially created by the stand-alone program named map_profiles, described in Section 32.

23.1.2.3.1 Determining an Ascent Profile Using the lookup_profile Map File

The two ascent map files are the ascent_alt_map map file, and the ascent_dist_map map
file. Each ascent map is grossly partitioned into 128 ascent profiles, and each of these profiles
is associated with one or more template aircraft and one or more flight distance categories.

ETMS Systems Design Document
Version 6.0

23-17

There are seven such distance categories: a Category 1 flight length ranges up to 500 nautical
miles, while a Category 7 flight distance extends beyond 4500 nautical miles. Each
intermediate category excludes all others.

A given ascent profile is addressed by an ascent index. These ascent indices are distributed in
the lookup_profile map file. The structure of the lookup_profile map file is presented in
Figure 23-4. The template aircraft index determines the row position of the map file while the
flight length category specifies the column position of the map file. A negative value in the
map file indicates that the aircraft-flight length combination is mildly inconsistent. That is, the
particular template aircraft's range is too great. The inconsistency is noted and the absolute
value of that element is used as an ascent_index. In addition, each template aircraft has a
generous maximum range limit. If the total distance for a flight exceeds the limit for the flight
aircraft's template, the flight is discarded on the basis that the distance is unreasonably long.

23.1.2.3.1 Ascent Map Files: Purpose and Structure

The ascent_alt_map map file is used to look up the distance along the ascent trajectory from
the takeoff roll to a given altitude when presented with the given altitude, type of aircraft, and
the total flight distance. This map file is structured as a doubly indexed array where the
elements are in integer32 format. The first index is the ascent_index, described in the
previous sections, and encompasses both the type of aircraft and the total flight distance.
Each of the 128 ascent index values is associated with an ascent profile. The second index
(i.e., alt_index) is computed by dividing the altitude (in feet) by 1000 and then rounding off.
Hence, the alt_index ranges from 0 to 60 (i.e., sea level to FL600).

The ascent_dist_map map file is used to look up the altitude, the speed, or the time from the
start of the takeoff roll given the current distance along the flight path, the type of aircraft,
and total flight distance. This map file is structured as a triply indexed array where the
elements are in INT32 format. The aircraft type and total distance determines the value of the
ascent_index. The second index is computed by dividing the current flight distance (up to
250 nautical miles) by 2. The third index determines which type of flight variable is used:

1 = altitude
2 = speed
3 = time.

NOTE: The speed is in units of 100*(nautical miles/minute). The other elements are in their
usual units, namely altitude in hundred feet, and time in minutes.

23.1.2.3.2 Descent Map Files: Purpose and Structure

The descent map files are quite similar to the ascent map files with the obvious difference
regarding the direction.

The descent_alt_map map file is used to look up the distance along the descent trajectory

ETMS System Design Document
Version 6.0

23-18

from the touchdown back up to a given altitude when presented with the given altitude. This
map file is structured as a singly indexed array where the elements are in INT32 format. The
index (i.e., alt_index) is computed by dividing the altitude (in feet) by 1000 and then
rounding off. Hence, the alt_index ranges from 0 to 60 (i.e., sea level to FL600). This uses a
common descent trajectory with a leveling out point at FL120.

117117117

117 117 117 117

-117 -117 -117 -117

-117 -117 -117

16

116 116 116 116 116

17

-116-116

115115115115115 -115-115

15 18 19 20 20

39 40 41 42 43 43 43

99 100 101 102 102 102 102

120 120 120 120 120 -120 -120

118 118 118 118 118 118 118

Flight Length CategoriesTemplate Aircraft Index

Template Designators
1 2 3 4 5 6 7

C150

C337

DC3

DC8

B72S

B757

A7

KC35

HELI 44

43

42

27

26

25

3

2

1
.

.
 .

.

. . . .
.

.
.

.
.

.

.
.

.
.

.
.

Figure 23-4. Structure of the lookup_profile Map File

ETMS Systems Design Document
Version 6.0

23-19

The descent_dist_map map file is used to look up the altitude, the speed, or the time to
touchdown given the current distance along the flight path, the type of aircraft, and the
cruising speed and altitude. This map file is structured as a triply indexed array where the
elements are in INT32 format. The aircraft descent group and the cruise Mach number
determine the value of the descent_index. According to the descent profile rule, an aircraft
initially descends at a given constant Mach number (determined by the cruise altitude and
speed) and then, at a transition altitude, follows a given indicated airspeed (IAS) to FL120.
The speed is reduced to 225 knots upon entering the terminal control area, and the flight's
final speed at approach is used according to the aircraft's descent group.

There are nine descent_index values. The first four include heavy commercial jets, fighters,
and big military jets. These indices increase with decreasing Mach numbers. The next four
index values include large commercial jets, and they follow the same index order and Mach
number scheme. The last descent index includes all pistonprops and turboprops regardless of
cruising speed. The second index is computed by dividing the current flight distance (up to
200 nautical miles) by 2. The third index determines which type of flight variable is used:

1 = altitude
2 = speed
3 = time.

23.2 Inter-process Communications

The Generic Buffering Package (GBP) has been developed to address the inter-process
communications needs of the Traffic Model Functions. For an overview of the reasons for
developing these generic routines, see Section 5.

The main requirements that have guided the development of the GBP are as follows:

• To optimize usage of computing resources, by isolating data processing
from I/O.

• To standardize inter-process communications for all Traffic Model
Function components.

• To make inter-process communications details transparent to the user,
whether they are local or remote - i.e., within the same node or between
nodes in a Local Area Network (LAN).

• To provide a flexible inter-process communications scheme, supporting
diverse data flow configurations.

• To optimize data throughput rates across the Traffic Model Functions.

The GBP uses queues for inter-process communications. Due to a flexible memory

ETMS System Design Document
Version 6.0

23-20

management strategy, queues can shrink or expand on demand, up to user-defined size limits.
This buffering feature gives each process some degree of asynchronicity in an otherwise
tightly coupled environment.

Design Issue: Queues as Shared Memory

Queues can be shared in a flexible manner to coordinate data flows between multiple
processes. Sharing of queues ensures that data is processed in overall time sequence, while
fully utilizing the data processing resources available through multiprocessing. Figure 23-5
shows the four available configurations:

(1) One process feeding one process

(2) One process feeding multiple processes

(3) Multiple processes feeding one process

(4) Multiple processes feeding multiple processes

For inter-process communications across the LAN, the GBP provides a set of relay and
receiver programs that make communications virtually transparent to user programs,
providing a simple and elegant approach to interfacing the Traffic Model Functions. See the
next section for more information on queues sharing memory across the LAN.

ETMS Systems Design Document
Version 6.0

23-21

Process A

Process D

Process C

Process B

Process B

Process A

Process D

Process C

Process B

Process A

Process A Process B Process C

Process D Process E Process F

(1) One process feeding one process

(3) Multiple processes feeding one process

(2) One process feeding multiple processes

(4) Multiple processes feeding multiple processes

Figure 23-5. Buffering Data Flow Configurations

Implementing Shared Memory. In order to implement shared memory between
otherwise independent processes, the virtual memory (VM) capabilities of the HP-UX system
have been used extensively. See Section 4, under the heading Mapped Files.

A queue is a list of memory blocks, each of which contains a portion of the list of items in the
queue. Memory blocks are mapped onto VM, and can be reached by any process with
pointers to them. Access to any queue is provided by VM-mapped data structures that contain
control information for each queue.

The memory blocks used in building any queue are dynamically managed by a global stack of
free memory; that is, all queues using the same directory on a node share the same pool of
memory blocks. Using a stack has the advantage of optimizing memory access, since the
system uses demand-driven paged memory management. Once a memory block (one or
several system memory pages) is popped from the stack, it will remain in use as long as
possible, pushed in and popped from the stack, before the system resorts to another block.
This translates into longer residency times for system memory pages in fast RAM, minimizing
disk access.

ETMS System Design Document
Version 6.0

23-22

Wherever there is data sharing, there has to be concurrency control in order to ensure data
integrity; that is, a piece of data can't be modified simultaneously by two or more processes.
UNIX semaphores are used to accomplish this.

Another issue that comes up when designing queue systems is the synchronization between
enqueueing and dequeueing processes (for example, how to tell a dequeueing process that
there are data in the queue, if it had checked before and the queue was empty). This aspect
of inter-process communications has been addressed using eventcounts based on UNIX
semaphores. General information on eventcounts can be found in Section 4.

In the queues case, eventcounts are used in two different instances:

(1) When a process is dequeueing data, and the queue is empty, it reads the current
queue eventcount value, and then waits until the value is advanced by an
enqueueing process.

(2) When a process is enqueueing data, and the queue has reached its maximum
size, it reads the current queue block eventcount value, and then waits until the
value is advanced by a dequeueing process, indicating a reduction of the queue
size.

Eventcounts are also used in the stack routines for managing stack underflow. Stack
underflow occurs when the free memory pool is temporarily depleted (i.e., when all memory
blocks are currently in use, and the stack is empty). The popping routine then reads the stack
eventcount and waits until it is increased by a push operation, indicating the release of a free
memory block.

The interaction of locking and eventcount management, if not properly designed, may lead to
deadlock situations. For example, a deadlock occurs when processes are waiting for
eventcounts to advance, but the processes that advance the eventcounts are locked out of the
data structures containing them, and are waiting for the locks to be released. Hence, all
processes are in a waiting state at the same time. To prevent this undesirable situation, a dual
locking mechanism has been developed, providing selective access to the stack and to each of
the queues.

The dual locking mechanism provides a set of three locks for the stack as well as each
queue. Each set includes the following locks:

• A global lock for the overall data structure. If this lock is set, no other
process can access the structure.

• A lock for insert operations on the data structure. This lock applies to the
stack operation push and the queue operation enqueue. If this lock is set,
any process trying to insert data into the structure is locked out.

ETMS Systems Design Document
Version 6.0

23-23

• A lock for retrieval operations on the data structure. This lock applies to
the stack operation pop and the queue operation dequeue. If this lock is
set, processes trying to fetch data from the structure are locked out.

Dual locking works as follows. Each stack or queue operation starts by trying to get the lock
for that operation, before trying to get the global lock. Then, prior to entering a waiting state,
the lock for the global structure is released, while the lock for the type of operation currently
intended remains set. Hence, the only process that can get a lock for the structure is one
performing the opposite operation, which then would cause the original operation to continue
after the proper eventcount increment.

Queues in a Local Area Network Environment. A set of relay and receiver
programs in the GBP expand the capabilities of this buffering package beyond a single node,
and onto the LAN. Moreover, this is achieved in a manner almost totally transparent to the
user programs, which don't have to deal with the communications details of it or be tied up
waiting for I/O to complete.

When interdependent processes are running on different nodes, the logical data transfer
queue can span several nodes, with relays and receivers handling the LAN inter-process
communications. Figure 23-6 depicts the special cases, this time showing processes running
on separate nodes. At the dequeueing end of some queues there are relays, sending data from
local queues to receivers in other nodes, each connected at the enqueueing end of a local
queue.

LAN inter-process communications is done via UNIX sockets. A receiver is a server, and
hence can accept, and enqueue locally, input data from multiple channels. A relay is a client
that opens a channel to a receiver, and sends locally dequeued data through the opened
channel.

Having the receiver be the server allows for the possibility of multiple remote inputs into a
local queue. By contrast, a relay has only one source of input, and needs to send data to only
one destination (that is, the extension of the local queue), making it the ideal client. Moreover,
data from a local queue may be processed in different places and can be distributed via
multiple relays operating simultaneously on the same queue.

ETMS System Design Document
Version 6.0

23-24

Relay A

Process A

Relay B

Process B

Relay A

Process A

Process B

Receiver

Process A

Relay B Process C Relay D

Process B

Receiver

Process D

Receiver

Relay D Process E Relay F

Process CReceiver

Process F

Receiver

Process D

Receiver

Relay CD

Process C Process D

Relay B

Process B

Process A

Receiver

Figure 23-6. Internode Buffering Data Flow Configurations

(3) Multiple processes feeding one process

(2) One process feeding multiple processes

(1) One process feeding one process

(4) Multiple processes feeding multiple processes

Node 3

Node 4
Node 3

Node 5
Node 1 Node 2

Node 1 Node 2

Node 3Node 2

Node 2

Node 1

Node 1

ETMS Systems Design Document
Version 6.0

23-25

For user programs, interfacing reduces to creating or opening a queue served by a relay in
one end and a receiver at the other end. The following cases show generic LAN inter-process
communications initialization logic for user programs whose queue data flows extend beyond
the local node:

• If dequeueing, either try to hook up to a receiver that is already running,
or start up a receiver. In either case queue identification information is
collected from a synchronization file, which contains shared queue
control information for the receiver and dequeueing processes.

• If enqueueing, either open or create a queue, and start up a relay process,
passing the queue identifier and the TCP/IP socket filename as program
parameters.

After the proper initialization steps, user programs enqueue and/or dequeue data items from
the appropriate queues, while LAN inter-process communications are handled by relays and
receivers.

Design Issue: Customizing the GBP

As with any generic package, the GBP needs to be customized for each usage. The
customization is performed by parameters controlling the creation and management of the
queues. The parameters are defined through an include file when the GBP is compiled.

The parameters file contains the following customized constants and type declaration:

• Maximum number of queues allowed

• Maximum number of queue items per queue block

• Total number of blocks in the free memory pool

• The data structure definition for items in the queue

The GBP also provides flexibility in the types of queue items it can handle using the same
underlying data structures. Although in any customization there has to be only one data type
definition for queue items, queues containing variable-size items can also be created
simultaneously. This feature proves especially useful for processes handling multiple queues
that contain different kinds of data.

When queues operate with variable-size items, these items are treated as character strings
copied to and from the queue, provided a single item doesn't exceed the maximum data size
for a block (size of declared fixed-size item times maximum number of items per block); i.e.,
no item can span multiple queue blocks.

Even though they share the same overall data structures, the fixed-record and variable-record
queues are incompatible. Therefore, each case has separate subroutine calls, which cannot be

ETMS System Design Document
Version 6.0

23-26

used interchangeably.

Processing Overview

The GBP is contained in three program modules to be bound with user programs, and two
sets of programs containing the LAN inter-process communications components. The
modules and sets of programs are described in the following sections.

23.2.2 Program Modules

23.2.1.1 The Server Module

Purpose

This module contains the enqueueing subroutines, enqueue and varenqueue, that perform
fixed-size and variable-size record enqueueing operations, respectively.

Input

Both enqueue and varenqueue require as input the queue number, a unique identifier for the
queue to enqueue data in.

In addition, enqueue needs as input the item to enqueue, which must be of the data type
declared in the GBP instantiation include file. Varenqueue requires as input a pointer to the
item to enqueue, and the length of the item.

Output

The only output of either enqueue or varenqueue is a boolean value, returning true if the
enqueueing operation was performed successfully, false otherwise.

Processing

Processing follows similar threads for fixed- and variable-size queue items, differing only in
the data copied into the queue. After getting the enqueue lock and the global queue lock, the
module checks for available space in the last queue block and, if the check was unsuccessful,
a new queue block is popped from the stack of free memory. If current queue size has
reached its limit, then the global queue lock is released, and the process enters a wait state
until the queue size decreases, when the global queue lock is grabbed again. Then, the
enqueue lock is released, the item is copied into the current slot in the current queue block,
and control returns to the caller after the global queue lock has been released.

Error Conditions and Handling

ETMS Systems Design Document
Version 6.0

23-27

Following is a list of error conditions that cause either enqueue or varenqueue to return a
status of false.

(1) Queue number provided has an invalid value.

(2) Queue with the number provided is inactive.

(3) Timeout waiting for a queue lock.

(4) Error occurred while waiting for a queue eventcount to advance.

23.2.1.2 The Client Module

Purpose

This module contains the dequeueing subroutines, dequeue and vardequeue, that perform
fixed-size and variable-size record dequeueing operations, respectively.

Input

Both dequeue and vardequeue require as input the queue number, a unique identifier for the
queue to enqueue data in.

In addition, dequeue requires as input a variable of the record type defined in the GBP
instantiation include file to serve as placeholder for the item to be dequeued. Varenqueue
requires as input a pointer to a buffer to serve as placeholder for the dequeued item, as well as
a variable containing on entry the size of the buffer provided.

Output

Both dequeue and vardequeue return a boolean value as completion status, true if successful,
false otherwise. If successful, both dequeue and vardequeue return the dequeued item in the
placeholder provided on input. In addition, vardequeue returns the actual size of the item in
the variable containing the buffer size on input.

Processing

Processing in the dequeueing subroutines follows the reverse thread of the enqueueing
subroutines. After getting the dequeue lock and the global queue lock, the client module
checks for items in the queue. If the check is unsuccessful, the global queue lock is released,
the client module waits until an item is inserted in the queue, and the global queue lock is
grabbed again. The item is then copied into a buffer area provided by the user, after the
dequeue lock has been released. Once the item has been copied, the state of the current queue
block is checked and, if the end of the block has been reached, the client module releases the
block by pushing it into the stack of free memory. Finally, the global queue lock is released

ETMS System Design Document
Version 6.0

23-28

and control returns to the caller.

Error Conditions and Handling

The following is a list of error conditions that cause either dequeue or vardequeue to return a
status of false.

• Queue number provided has an invalid value.

• Queue with the number provided is inactive.

• Timeout waiting for a queue lock.

• Error occurred while waiting for a queue eventcount to advance.

23.2.1.3 The Support Module

This module contains all initialization and memory management routines, which include the
stack operations. The following are routines contained in this module:

• Routines for queue and stack creation, opening and closing.

• Routines for stack and queue cleanup after abrupt program termination.

• Hook_receiver, a routine that hooks up to a receiver queue, starting a new
receiver if necessary.

• The stack operation push, which releases a queue block already used,
returning it to the free memory pool.

• The stack operation pop, which grabs an available memory block from the
free memory pool.

• Dequeue_ec_trigger, a routine that returns the queue eventcount trigger
value indicating the queue is not empty.

• Check_queue, a routine that prints queue status data to standard output for
the queue with the number provided.

23.2.2 LAN Inter-process Communications Programs

The following sections briefly describe the Receiver and Relay communications programs.

23.2.2.1 The Receiver Processes

Purpose

ETMS Systems Design Document
Version 6.0

23-29

Receivers receive data via the Receiver socket one item at a time, creating the need for two
software components, to handle fixed- and variable-sized record enqueueing separately. The
software components are called, respectively, Decoupled Receiver and Fixed Receiver. Note
that the only difference between these two software components is the use of either
varenqueue or enqueue subroutine calls.

Execution Control

A Receiver process is usually started up by a dequeueing process, but it can also be started at
node startup or by the nodescan process.

Input

The Receiver processes require two parameters, with an optional third, to be provided in the
program command line:

(1) The Receiver TCP/IP socket file name.

(2) The queue synchronization file name. This file is used to pass the queue
number to all dequeueing processes which may access it.

(3) An optional parameter, containing the maximum number of queue blocks to
allocate to the queue. By default, this parameter is set to 1000.

During processing, the Receiver processes accept three types of input, all in the form of
messages:

(4) Channel open requests, which currently can be of two types:

(a) Data input channels, which provide the Receivers with data to enqueue in
the local queue.

(b) Input request channels, which request from the Receivers the relay of data
sent by the data input channels.

(5) Channel close notifications, from clients with open Receiver channels.

(6) Data messages, intended to be enqueued in the local queue by the Receiver
processes and, if applicable, relayed to all the current input request clients to
the Receiver mailbox.

Output

Output from the Receiver processes can be of two kinds:

(1) Control messages. These messages are sent by the Receiver processes to their
clients in the following instances:

ETMS System Design Document
Version 6.0

23-30

(a) When a client requests to open a channel connection, the Receiver process
sends a message accepting or rejecting the request.

(b) A Receiver process may deallocate a client channel on request or as part
of a cleanup routine before it aborts processing.

(2) Data messages. These messages, received from data input channels, are
echoed to all the current input request channels, as well as enqueued in the
local queue serviced by the Receiver process.

Processing

At initialization time, the Receiver process reads the program parameters in the command line
and creates the Receiver socket, the queue synchronization file, and the local input data
queue. If the Receiver process fails to create the synchronization file, it tries to open the
synchronization file and open the local input data queue, if there is one already there;
otherwise, it creates the local input data queue. After it finishes the initialization steps, the
Receiver process advances an eventcount in the synchronization file, which signals to all
dequeueing processes the availability of the local input data queue.

The Receiver process is a server that accepts two types of channels: data and input request
channels. It waits for data to come via the data channels, echoes it to all the input request
channels, and enqueues it in a local queue.

NOTE: A variation on the receiver idea allows parallel processing strings from a single data
thread, each having the same input. A tapping receiver is a receiver that, instead of
being a mailbox of its own, becomes an input request client to another receiver, which
allows it to get all the data the receiver gets.

Error Conditions and Handling

The following is a list of error conditions causing program termination:

(1) No TCP/IP file name, or synchronization file name, in the program command
line.

(2) The Receiver process failed to create or open the synchronization file with the
name provided.

(3) The Receiver process failed to decode the optional command line parameter
indicating the maximum number of queue blocks to allocate for the queue.

(4) The Receiver process failed to complete program initialization successfully.
This error condition aggregates the following errors:

(a) The Receiver process failed to create the Receiver socket.

(b) The Receiver process failed to create or open the local data queue.

ETMS Systems Design Document
Version 6.0

23-31

(c) The Receiver process failed to advance the synchronization file
eventcount.

Error conditions that don't provoke process termination are listed below:

(5) If the Receiver process fails to send a message to a Receiver client, it checks
the status code returned by the operating system. If the failure is due to the
channel buffer being full, the process ignores it. Otherwise, the process
deallocates the channel in question.

(6) The Receiver process ignores any messages that are neither data, open
requests, nor channel close notifications.

(7) If the Receiver process fails to enqueue data received from the Receiver
socket, it prints an error message to standard output and continues processing.
No further buffering of the data that was to be enqueued is done, thus
effectively losing the data.

23.2.2.2 The Relay Processes

Purpose

The Relay processes handle queue data transmissions across the LAN. Depending on the
format of the queue data transmitted across the LAN, there are two types of Relay processes:

(1) Fixed Relay. These Relay processes handle the transmission of fixed-record
size queue data.

(2) Variable Relays. These Relay processes handle the transmission of
variable-record size queue data.

Execution Control

A Relay process is usually started up by an enqueueing process, but it can also be started at
node startup or by the nodescan process.

Input

The Relay processes require as input the following command line parameters:

(1) Parameters file name. The parameters file contains the following program
parameters:

(a) Receiver TCP/IP file name, followed by a retry indicator.

(b) Coupled/Decoupled communications indicator.

ETMS System Design Document
Version 6.0

23-32

(c) Receiver socket client type name.

(d) Free format text to append to the Receiver socket open request, to be
displayed by the Receiver process upon acceptance of the open request.

(2) Queue number, a unique identifier for the output data queue.

During processing, the Relay processes get their only input from the output data queue.

Output

The output of the Relay processes is data from the output data queue, transmitted to the
Receiver.

Processing

At initialization time, a Relay process reads the parameters file name and the output data queue
number from the program command line. The Relay process then reads the Receiver socket
name from the parameters file. If there is a socket file name in the parameters file, the Relay
opens a channel to the Receiver. Otherwise, the Relay sets a flag indicating no Receiver
connection is requested. Two more flags are set by the Relay at initialization: a flag for
retrying to open Receiver after losing the connection, and a flag indicating either coupled or
decoupled communications mode.

A relay is a dequeueing process that becomes a data input client to a Receiver. The normal
processing sequence for a Relay process consists of an endless iteration between dequeueing
data from the data output queue and transmitting the data to the Receiver socket, if the proper
flag is set.

Error Conditions and Handling

The following is a list of error conditions causing termination of a Relay process:

(1) No parameters file name provided in the command line, or the Relay process
was unable to open the file provided.

(2) No output data queue number provided in the command line, or the Relay
process was unable to open the queue with the number provided.

The following is a list of recoverable error conditions for the Relay processes:

(3) If the Relay process is not able to connect to the Receiver, further processing
depends on the status of the retry flag. If it is set, the Relay process will keep
trying to connect to the Receiver until it succeeds. If the retry flag is not set,
the Relay process will enter normal processing, after disabling all further data
transmissions.

ETMS Systems Design Document
Version 6.0

23-33

(4) The Relay process receives an operating system error status after trying to
transmit data to the Receiver, and the status code doesn't match any of the
special cases mentioned above. In this case, the Relay process closes the
Receiver channel and, if the proper flag is set, it tries to reconnect to the
Receiver. Upon successful reconnection to the Receiver, the Relay process
retransmits the data item to the Receiver.

(5) If a call to the dequeueing routine (dequeue or vardequeue) fails, the Relay
process will print the output data queue and data transmission statistics to the
standard output stream, skipping the data transmission step, since there is
nothing to transmit.

23.2.3 Generic Buffering Package Data Structures

The GBP data structures are divided into three main groups:

(1) Those visible to the user, needed for access to the queueing facilities

(2) Internal data structures supporting the GBP

(3) Those used for customization of the package. Since definitions for these
structures differ by customization, they are not described here.

23.2.3.1 User-accessible Data Structures

The following are global filenames and variables that provide the user with limited access to
different aspects of the package.

23.2.3.1.1 Filenames

• Stackfile - mapped file containing the memory pool control stack, and
queue control data. The default is memory_stack_and_queues, in the
current working directory.

• Blockfile - mapped file of free memory blocks. The default is
memory_blocks, in the current working directory.

• Receiver_synchro - synchronization file for starting inter-process queue
operations. The user must set this name if it wants to use this file, since
there is no default.

• Receiver_mailbox - TCP/IP file name for incoming messages to local
receiver. The user must set this name if it is a receiver.

23.2.3.1.2 Other Globals

ETMS System Design Document
Version 6.0

23-34

• Synchro_ptr - auxiliary variable that may be used to point at
synchronization file mapped in virtual memory.

• Queue_stack - pointer to start of Stackfile in virtual memory.

• Blockfilestart - starting offset of mapped Blockfile in virtual memory.

• Enqueue_eventcounts - array of pointers to eventcounts for each queue.
Can be used for selective waits in programs with more than one input,
triggering a call to dequeue or vardequeue.

• Wait_time_for_lock - maximum time to wait for a queue or stack lock
to be released, before returning error status.

ETMS Systems Design Document
Version 6.0

23-35

23.2.3.1.2 Synchronization Data Type

Table 23-5 illustrates the structure of the synchronization table, which contains shared queue
control information for the receiver and dequeueing processes.

Table 23-5. Synchronization_record_t Data Structure

Synchornization_record_t
Library Name: buffer_openlib Element Name: buffer.h
Purpose: Serves as synchronization structure for interprocess communications (IPC) using queues.
 It stores the quiue id, and controls startup of communications.

Data Item Definition Range Var. Type
eventcount counter controlling quiue status EVT_T

aueuenumber IPC quiue id 0..maxqueues queue_range

severity severity returned from
process creating queue

severity levels
(0..15)

short

23.2.3.2 Internal Data Structures

The remaining tables in this section illustrate data structures that are used within the GBP
itself to manipulate stacks and queues.

Table 23-6. Buffer_control_record_t_Data Stucture

Buffer_control_record
Library Name: buffer_openlib Element Name: internals.h
Purpose: GBP structure for dynamic memory measurement

Data Item Definition Variable Type

queuelist_semaphore int

mkey int

next_key int

last_free_block int

front_of_list int

blocks_allocated int

max_blocks_allocated int

q_list array of queues queue_control_record

ETMS System Design Document
Version 6.0

23-36

Table 23-7. Queue_control_record_t Data Sructure

queue_control_record
Library Name: buffer_openlib Element Name: internals.h
Purpose: Contains control structures for a single queue

Data Item Definition Variable Type
eventcount EVT-T

queue_semaphore int

front_of_q int

back_block_num int

back_of_q int

entries_enqueued int

entries_dequeued int

blocks_limit int

blaock_in_use int

total_blocks_used int

max_blocks_used int

active Boolean

use_evt Boolean

